
LITERATURE CITED 

i. B. Boll and G. Weiner, Theory of Temperature Stresses [Russian translation], Moscow 
(1964). 

2. A. D. Kovalenko, Thermoelasticity [in Russian], Kiev (1975). 
3. W. Nowacki, Dynamic Thermoeleasticity Problems [Russian translation], Moscow (1970). 
4. Ya. S. Podstrigach and Yu. M. Kolyano, Generalized Thermomechanics [in Russian], Kiev 

(1976). 
5. E. M. Kartashov and G. M. Bartenev, Science and Engineering Surveys, Ser. Chemistry 

and Technology of High-Molecular Compounds [in Russian] (1988), Vol. 25, pp. 3-88. 
6. Yu. M. Kolyano, Mathematical Methods and Physicomechanical Fields, No. 2 [in Russian] 

(1975), pp. 42-47. 
7. A. V. Lykov, Theory of Heat Conductivity [in Russian], Moscow (1967). 
8. V. L. Kolpashchikov and S. Yu. Yanovskii, Inzh.-Fiz. Zh., 47, No. 4, 670-675 (1984). 
9. S. Kaliski, Bull. Acad. Polon. Sci. Ser. Sci. Techn., i__33, 5-18 (1965). 

i0. S. Kaliski, Proc. Vibr. Problems, 6, 3-10, Polish Acad. Sci. (1965). 
ii. N. A. Kondratyuk, Mathematical Methods and Physicomechanical Fields [in Russian], No. 

i (1975), pp. 211-212. 
12. V. I. Danilovskaya, Prikl. Mat. Mekh., i__44, No. 3, 316-318 (1950). 
13. T. Mura, Red. Rep. Tac. of Eng., Meiji Univ., No. 8, 64-70 (1956). 
14. G. Parkus, Nonsteady Temperature Stresses [Russian translation], Moscow (1963)o 
15. E. M. Kartashov, Analytic Methods in the Theory of Conduction of Solids [in Russian], 

Moscow (1985). 
16. V. A. Ditkin and A. P. Prudnikov, Handbook on Operational Calculus [in Russian], Mos- 

cow (1965). 
17. G. Doetsch, Handbook on the Practical Application of the Laplace and Z-Transforms 

[Russian translation], Moscow (1971). 
18. M. L. Levinshtein, Operational Calculus and Electrical Engineering Problems [in Russian], 

Leningrad (1972). 

ELECTROCONVECTON AND HEAT EXCHANGE IN DISPERSED 

GAS-LIQUID SYSTEMS 

M. K. Bologa and F. M. Sazhin UDC 532(075.8) 

The problem of momentum, energy, and electrical charge transport is formulated 
for gas-liquid dispersed systems; electroconvection, heat liberation, and in- 
terphase heat exchange are considered, and practical applications of such 
studies in diffuser systems are described. 

Introduction. In a number of branches of industry, such as thermal energy production and chem- 
ical and food technology processes in which a gas interacts with a liquid are often used, and 
they are often carried out under bubbler conditions to intensify them. The main questions 
involved in study of such processes are the hydrodynamics of the gas-liquid layer, removal 
of the liquid phase, heat-mass transport and organization of various processes both in the 
bubble layer and the vapor-gas space. 

The action of electric fields can significantly intensify heat exchange in gas-liquid 
media. To a certain extent such questions have been investigated in bubble boiling [i]. 
It follows from data available in the literature on the problem of heat exchange in bubble- 
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layer processes that in the dependence of the bubbler plate heat liberation coefficient 
on gas velocity one can distinguish at least three regions, with the dependence being self- 
similar in two of these [2]. There are studies which indicate that under certain conditions 
an electric field can intensify interphase heat exchange. 

The mechanism of electric-field action in bubbling processes is related to the effect 
of electroconvection on the hydromechanical state of the phases: the change in the phase 
thermodynamic properties in an electric field is negligibly small compared to electrocon- 
vective phenomena [3]. 

The absence of a unified viewpoint on this problem and the extreme lack of data, espe- 
cially experimental, on the effect of an electric field stimulated our study of the question. 

Momentum, Energy, and Electrical Charge Transport in Gas-Liquid Dispersed Systems. 
One method of describing the interrelated processes which occur in such systems is based 
on the concepts of the mechanics of a continuous medium, although in formulating problems 
consideration of electrical fields is either a special case [3-5] or absent [6]. 

We will consider the system formed upon escape of a gaseous phase into a liquid medium 
and divided by the free liquid surface into the bubble region ~' and the vapor-gas volume 
~", in which the liquid phase is dispersed and carried off. Before the process commences 
the region ~' is filled with liquid, while ~" is filled by gas, and the regions are in a 
state of thermodynamic equilibrium which, in particular, assumes absence of macroscopic 
motion of the phases (v1') 0 = (vz")0 = 0 and uniform temperature distribution over vo!'~e 

(T,')0 = (T1")0 = To. 

At the beginning of the process (t = O) a vapor-gas flow with parameters (G2')0, (T2')0, 
(P2v')0, and (n2i') 0 bubbles through the liquid (region ~') in the form of bubbles with a 
mean breakaway radius (a') 0. On the surface s bubbles are generated in the form of the 
dispersed system medium ~", while liquid is dispersed into droplets with characteristics 

(2a")s, ( 2")s, and (n") s. 

At the initial time (t = 0) in region ~" an ionized vapor-gas flow appears with param- 
eters (Gl")0, (Tz")0, (Plv")0, and (nzl) 0. From the region ~" a flow of liquid electro- 
aerosol is extracted with phase transitions occurring on the phase boundaries. 

We consider the assumptions of [5, 6] and neglect collisions between unipolarly charged 
droplets and bubbles. 

We then require the time and space distribution of vi, Vra, a, n, ~i, J12, J2z, Ti, 
To, 9i, Pi, Po, E, ~, 9el, and Je in the regions ~' and ~". 

We calculate the distributions of these parameters for the region ~' until the process 
reaches a steady state, where 

OTi --0, OPi _0 ,  09~ --0, (1) 
Ot Ot Ot 

and for the region ~", in addition, until thermodynamic equilibrium is reached between the 

phases 

~ = ~,E o~ 05 = P~E- (2) 

Within the concepts of [3, 4, 6, 7] we represent the problem by the system of equations 

an (3) 
aP----!-~ + v (p~v~) = --+-n ( i~  - i~);  ~ + v (nv2) = ~:; 
Ot 

da _ _  Vra "JU jl_~2---IZ..._I. (4) 
dt 4aa2p~ ' 

dvra 
dt 

1 [ ~1 (Po. - -  P1 - -  2~la) 4~1oh 

a (I - I, I~,/3) [ p? ap ~ 

3(~1-- 1-47a~/3 + 0.33~ vf~+ (v2--v*)~" 1 
2 4 J ; 

(5) 
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Pi 
[ av, ] 

at + t v i v ) v i  = a i [ - - v P * + v ~ x k * l - - n ( h ~ - - / ~ ) ( v ~ - -  

E = --vq~; 
2 

%v(eE) = X P e i ;  
i = 1  

( 6 )  

(7) 

(8) 

_o a (eE) 
Je = ~ + ~ De:V/ + eo - -  

i=l at 
(9 )  

P l - -  

~ Opei 
Ot ~-VJe=-O; 

dk~l 
dt 

-- n (alFm + F~,) (v2 - -  vl) - -  39~ Ot2Ura ( V 2  - -  V 1 )  2 - -  

~1 [ k.~]; - -  ~ljnV~ (v~ - -  v~) - -  ~1~ - - j  ~ - - ~  (h'~ - -  M )  (v .  --2 v~)~ 

o ( [a/p / Cp~ + ~ i P ~  (?~Ti -- 1)1 OT~ 
at 

( Opi 
•  at § 

~?~PiTi 
+ v~vTi + 9o X 

viVDi) = --4aaZn~u (Ti - -  T,~) ~ n (jl~. - -  ]~1) [(cpi)~Ta - -  

Pia 
- -  c;iTi 

Dia 

[ 0js O~ aza To- -  
OTo OT~ O~OTo 

v.vTo ~ 2T~ Oa da + 
), a OT~ dl 

__~_] ,. o, j + Q~ ' 

2 
- ~ ~ ,  i t ,  - r~)  + . (h .~  - -  M )  x 

i ~ l  

(io) 

(Ii) 

(12)  

~tlUra f* ) 
X na3D .Y -4-4za 2 -  ; (13)  

O9~a 0,o~ _ Dv ( 02pv2 -1-- 2 0Pv2 / (14)  
-0t = D~lViPvl; Ot 1 0t.z r Or ; 

,o~c,~ at at "~-37-~r ~ ' r Or ]--(c~'~'--q~O(i'~'--M)--aT'2" Or ' 

o OT: (cOZT~ 2 or: ) 
Dic~o.-3~ : ;'- k or2 + - ; -  % -  ( 1s ) 

E q u a t i o n  (3)  r e f l e c t s  c o n s e r v a t i o n  o f  mass f o r  e a c h  p h ase  and c o n s e r v a t i o n  of  t h e  volume 
c o n c e n t r a t i o n  o f  b u b b l e s  and d r o p l e t s  in  t h e  d i s p e r s e d  p h a s e ,  where  Pi = a i P i  ~ % + 62 = 
1, and a2 = 4~a3n /3 .  Here  and be low,  t h e  u p p e r  s i g n  (+ o r  - )  i s  t a k e n  f o r  t h e  phase  i = t ,  
and t h e  lower  f o r  t h e  phase  i = 2, u n l e s s  o t h e r w i s e  n o t e d .  Mass ex ch an g e  i n t e n s i t y  in  t h e  
r e g i o n  fl' i s  d e f i n e d  by t h e  d i f f u s i o n  e q u a t i o n  w i t h i n  t h e  d i s p e r s e d  p a r t i c l e  

~ OOv2 \ da " , o: ,~  ( / 0 ( t 6 )  
/~2 = - - ] _ o i -  l__Dv a \ - -a~r  i , .=o+ DiPva dt ' 

which  can be s o l v e d  j o i n t l y  w i t h  t h e  f i r s t  e x p r e s s i o n s  o f  Eqs.  (14)  and ( 1 5 ) .  In  t h e  r e g i o n  
~" the mass exchange intensity is determined by the criterial equation of mass liberation 
from the phase boundary into the carrier phase [7]: 
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],2 = --12, Dvlp~ (Ov~--2a 0,,9 2 + 0.625 P'-',,l~ [ ( v . . . - - . , ) ~ ,  J /' (17) 

which is solved jointly with the second equations of Eqs. (14) and (15). 

Equation (4) describes radial motion of the phase boundary of a dispersed particle, 
pulsations of which are defined by the generalized Rayleigh-Lamb equation (5). 

The hydrodynamic state of each phase is defined by Navier-Stokes equation (6), where 

., < . , ,  ) l  i 1:,1 ---- 2~ef e -- 6hZVVl -- 9~z 2 (re-- vl) h (v 2 - v l )  1 -  
3 -2- (18) 

l 5h/ (y2 __ V1)21 ; 
3 

e ~, I (or, ~ o~i ~. ( 19 )  
= 2 I o~, + o ~  ) '  

. 
P* = alP1 § ~2 (P2 -- 2~/a) -l- P~ a2 vr~ + (v~--v~)~] 

6 ; (20) 

F* : F~ § Fm § Fo~ § FAp § FB; (21) 

1 1E2v~+ 1 [ 0~1 '~ ] 
fel=PelE-- 2 -2 -eoV P~E2( OP ~ )r, ; [e2--peaE" (22) 

Equation (18) is a reduced viscous stress tensor, where the external deformation rate 
tensor is described by Eq. (19). Equations (20)-(22) describe generalized interphase pres- 
sure and force, as well as electrical force density within the phases. Equations for the 
forces written in Eq. (21) were given in [6]; their relative values can be estimated from 

the criterion 

L - - 2 a ~ / /  P? - V S t R e  (23) 
~lt, 

For L ~ 1 (Re ~ i), F m ~ F B ~ F~ and we may limit ourselves to the viscous friction force, 
while for L ~ 1 (Re << i), F m >> FB ~ F~ and we consider only "combined mass" force. 

The volume charge density Pel appearing in Eq. (22) has a Boltzmann distribution, dis- 
torted by the presence of excess charge of one sign ni • from ionized gas flows 

-~-i ] --(n~)~ -T- krl ' (24) 

where in the region a' (nii• 0 = (nii')0, and in the region ~", (nai• 0 = (nai")0. Here 
(nii) 0 defines charge diffusion from the dispersed phase volume into the carrier phase 
volume. If ni • = 0, the kinetics of dispersed phase particle charging are defined by the 

expression 

Pc2: [q| + (qo -- q=) exp (--t/~)l n, (25) 

where q0 = 3(~z - e2)e0va2E/(~2 + 2el) and q~ = 3(Oei - Oe2)e0~a2E/(oe2 + 2Oel) are, respec- 
tively, the initial and limiting particle charges; T = e0(e 2 + 2el)/(Oe2 + 2Oea) is the 
characteristic time of the charging process. For low conductivities Oel and Oe2 and ni• 
0, the dispersed phase charging kinetics are defined by [6] 

pe2: 4~eoEnaZ(l + 2 e~--e-- a ) qI(n~)~ (26) 
e2+2el 4eo§ 

For rot E = 0, the relationship between electric field intensity and potential is de- 
termined by Eq. (7), while they themselves are found with Poisson equation (8). 

1128 



The transport current density in Eq. (9) is composed of the mixture conductivity current 
2 0eE 

oeE, the convection current i~lgeiVi , and the displacement current e0--. In the nonsteady 
0t 

case the equation of continuity of the total current has the form of Eq. (i0). 

The energy equations for the system include Eq. (ii) for the kinetic energy k w of 
fine-scale motion produced by noncoincidence in phase velocities, while Eqs. (12) and (13) 
are written for each phase, including the o-phase, where the additional term is 

1 \ 
5~IVVl} e kl -6 ~llnF~ (vl --  -6 Q* = V (L~vT1) -6 2P~ef ~( eh~ 3 

t 

12ala~lvi~ 
~1 k ~ - 6  " Q ~ = 0 .  + ~h - ~  a 2 , 

(27) 

The coefficients Sti can be calculated from the criterial equation of dispersed particle 
heat liberation into the surrounding medium [7] and energy [Eq. (15)]: 

~tl  = ~ 2-6 0,46 (vl --vi)  ~ ~lcvl 
h JJ' (28) 

h [OT~] 
~a -- T , - -  T~ [--'-~r /r=a" 

The s ign  before  the  term r*/4~a 2 in Eq. (13) i s  p o s i t i v e  fo r  the  r eg ion  ~" and n e g a t i v e  
fo r  ~ ' .  The i n t e n s i t y  of  mass and hea t  exchange is  de termined by Eqs. (14 ) - (17 ) .  

System (3 ) - (15 )  i s  completed by dependences of  the  p h y s i c a l  p r o p e r t i e s  of the  phases 
on t h e i r  s t a t e  pa ramete r s .  I t  should  be noted  t h a t  fo r  g r e a t e r  p r e c i s i o n  i t  i s  neces sa ry  
to  cons ide r  the  d i s t r i b u t i o n  of  p a r t i c l e s  over s i z e ,  a l t hough  t h i s  compl ica tes  d e s c r i p t i o n  
of  t h i s  c l a s s  of  phenomena even more. 

The c o n d i t i o n s  r e q u i r e d  fo r  uniqueness  may va ry  depending on the  conc re t e  problem con- 
s i d e r e d .  For example, as i n i t i a l  c o n d i t i o n s  we s p e c i f y  thermodynamic and h y d r o s t a t i c  equi-  
l i b r i um of  the  media in the  absence of  a d i s p e r s e d  phase and e l e c t r i c  f i e l d .  The boundary 
conditions include those at the electrodes - the attachment condition, wall temperature, 
and electrical potential (in addition, on the lower electrode we specify specific flow rate, 
temperature, pressure, concentrations of the vapor-gas flow ions and bubbling liquid, and 
the diameter of the perforations through which the flow is supplied); on the free liquid 
surface we have conditions for the change in aggregate state of the phases, including the 
function ~ for the dispersed phase in the last expression of Eq. (3), discontinuities in 
phase velocity and volume content, as well as refraction conditions for the electric field 
intensity and thermodynamic parameters; on the phase boundaries we have boundary conditions 
of the fourth sort, attachment conditions, and values of excess charge surface density; 
on the remaining boundaries we have attachment conditions and boundary conditions of the 
first sort. 

Electroconvection in Gas-Liquid Media. A significant role is played in the development 
of electroconvective phenomena by inhomogeneity of the medium with respect to the electro- 
physical parameters e and z [3]. When temperature variation in the medium is insignificant, 
one can speak of electromechanical convection (EMC) in gas-liquid systems, since the phases 
differ in their mechanical and, thus, electrophysical composition. 

It should be stressed that electromechanical convection is the fundamental but not 
the only form of convection in such media. The processes of charge, heat, and mass trans- 
port occur in the presence of high gradient temperature and concentration fields which in- 
crease the inhomogeneity of the e and �9 distributions: the nonisothermal state of the medium 
causes electrothermal convection (ETC), while concentration gradients cause electroconcen- 
tration convection (ECC). Thus, a nonisothermal medium in an electric field is located 
in a complex dynamic state defined by the simultaneous action of EMC, ETC, and ECC. System 
reaction to stimulation by the field can be predicted by the criterion R [3], which is the 
ratio of the displacement current to the through-conduction current, and is proportional 
to T/t 0 . For R ~ i, the system behaves like an ideal dielectric, while for R ~ i it acts 
as a weakly conductive medium. Even relatively good liquid dielectrics with parameter 
T e 1 sec cannot be considered ideal after lengthy maintenance in adc field (to + ~), while 
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Fig. i. Dynamics of growth and motion of an air bub- 
ble in transformer oil (Vra', v2', m/sec; t, sec); 
Pg = 0.13 MPa; E', kV/cm: i) 0; 2) 30. Solid lines, 
calculation of bubble linear velocity; dashes, radial 
velocity calculation; points, experiment. 

in hf field (0 ~ t o ~ 1 sec) gas-liquid media with relaxation times characteristic of con- 
ductors become ideal. 

The process of bubble flow through a high-resistance liquid within a volume exposed 
to the electric field of a horizontal system of planoparallel electrodes is accompanied 
by various electrodynamic effects, in the absence of an electric field gas bubbles detached 
from the lower electrode settle on the upper one, forming a multilayer structure. At low 
gas velocities the settling bubbles are driven by rising ones to the edges of the electrodes 
and are removed from the interelectrode space. Their place is taken by rising bubbles and, 
thus, there is a constant renewal of the foam. With increase in gas velocity the thickness 
of the layer of deposited bubbles increases and foam renewal is extended, although the in- 
tensity of renewal over layers is stabilized. 

In an electric field the bubble layer moves away from the upper electrode toward the 
lower one, a greater distance, the higher the field intensity. Simultaneously bubbles are 
scattered and intensely removed from the region under the action of electrical forces. The 
electric field also affects the hydrodynamic state of the continuous phase. With increase 
in field intensity electroconvection of the liquid increases, while the character of liquid 
flow at the lower electrode differs from that at the upper. Visual observations have shown 
that jets of gas escaping from capillaries in the lower electrode are the source of vortices 
which form about that electrode; with increase in gas velocity the intensity of electrocon- 
vection and turbulization of the layer adjoining the electrode increase. The layer of bub- 
bles departing from the upper electrode limits the scale of liquid circulation in the inter- 
electrode space and with increase in gas velocity at low field intensities the intensity 
of electroconvection at the upper electrode is less than at the lower. 

Judging from the hydrodynamic pattern of bubble flow in an electric field, one would 
expect a strong dependence of heat liberation at each electrode on the field intensity and 
gas velocity. It has also been proposed that the main force acting on bubbles is caused 
by the electric field gradient, inhomogeneity in which reaches large values at the elec- 
trodes, as has been shown by probe measurements. 

This hypothesis has been confirmed by study of the mathematical model of [8], describ- 
ing evolution of a gas bubble under such circumstances. The mathematical description of 
the problem is based on the equations of motion, Rayleigh-Lamb equation (5), and Poisson 
equation (8). The phases of bubble growth, separation, detachment, and free ascent in the 
interelectrode space of a horizontal planoparallel capacitor were studied. Numerical cal- 
culations were compared to experimental data obtained by the trajectory method. Calcula- 
tions showed that a bubble nucleus begins to grow slowly at first due to the influence of 
all the retarding factors, especially surface tension (Fig. i). The duration of this period 
is very brief and is determined mainly by gas pressure ahead of the capillary. Soon the 
effects of surface tension and liquid velocity become negligibly small in comparison to 
the gas pressure and liquid inertia, and the bubble growth rate increases rapidly, reaching 
a maximum. With increase in gas pressure the maximum growth velocity increases significant- 
ly. For example, at 0.Ii MPa, Vr~ =0.17 m/sec, while at 0.16 MPa, Vra' = 3.23 m/sec. 
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Fig. 2. Field intensity E' (kV/cm) vs 
bubble detachment radius a0 f , mm. Gas- 
permeable electrode polarity: i) positive; 
2) negative; solid lines along points, ex- 
periment; dashes, calculation. 

At the maximum the effect of inertial forces decreases, the growth rate falls off, and the 
process enters an asymptotic stage. The growth curves in this phase are qualitatively analo- 
gous to corresponding dependences for boiling. With increase in field intensity the bubble 
detachment diameter decreases (Fig. 2), this dependence being determined by the polarity 
of the lower electrode, due to the asymmetry of the field distribution. The effect of the 
field on bubble growth and detachment dynamics reduces to earlier completion of these stages 
as compared to the absence of a field. However, in the free bubble ascent stage the bubbles 
rise more rapidly in the absence of a field (curve i, Fig. i), but then are braked, not 
reaching the upper electrode in an electric field (curve 2). Thus, the results obtained 
indicate the validity of the propositions presented above regarding the nature of the elec- 
trical force. 

We will consider electromechanical convection for the case where there acts upon the 
dispersed phase from the direction of the electric field a Coulomb force, which is typical 
for droplet removal upon bubbling through low-resistance liquids [9]. It is known that 
upon destruction of bubbles on the free surface of the bubble layer droplets are produced 
by dispersion of the bubble domes and secondary fountaining. In the absence of an electric 
field the main mass of droplets moves inertially against the force of gravity, and under 
the action of the latter returns into the liquid or is carried off by the same, contaminating 
it, so that measures are required to separate the droplets. In an electric field the drop- 
lets take on excess charge and become capable of being controlled, depending on the field 
configuration, intensity, and frequency. In a dc field fine droplets are carried off to 
the seed electrode along force lines; dispersed phase motion in ac fields is characterized 
by two regimes: impulsive and oscillatory. If the characteristic time of droplet motion 
is greater than the electric field oscillation period, but less than the droplet charge 
relaxation time, such drops perform an oscillatory motion in some intermediate region of 
the interelectrode space at the external field frequency. The opposite relationship of 
characteristic times leads to impulsive motion of the dispersed phase. If the character- 
istic times are comparable to each other, droplet motion is unstable and represents a spon- 
taneous transition from the one regime to the other. 

The basic parameters of the electroaerosol removed depend basically on the gas velocity 
and field intensity; their characteristic dependences are shown in Fig. 3. 

With consideration of the equations of droplet motion, conservation of their volume 
concentration in the steady state, Eq. (3), and the Poisson equation (8), a mathematical 
model was developed for generation and electroconvective removal of droplets [I0], describ- 
ing dynamic removal regimes observed experimentally. 

Summarizing, we note that analysis of the problem of Eqs. (3)-(15), the particular 
models of [8, i0], and experimental results permit determination of limits of dispersed 
phase concentration and electric field parameters at which the effect of collective pro- 
cesses begins to appear: scattering, coagulation, particle breakup, hydrodynamic inheritance 
effects, etc.; these should be considered at volume dispersed phase concentrations greater 
than 0.0001 in gas-dispersed and greater than 0.001 in liquid-dispersed media. There also 
exists a "threshold" for field effect on such collective phenomena. 

Electroconvective Heat Exchange in Gas-Liquid Emulsions. In exerting a significant 
influence on the structural-hydrodynamic characteristics of the bubble layer, the electric 
field leads to intensification of heat liberation and interphase heat exchange. To study 
these questions use was made of the experimental arrangements described in [ii]. 
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Heat liberation of gas permeable electrode oriented Fig. 4. 
opposite gravitation, under bubbling conditions with dc elec- 
tric field: i) (Ar �9 0.2Are)pr,. i0 s = 0.19; 2) 0.52; 3) 1.52; 
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The first series of experiments studied heat liberation from the electrodes of a hori- 
zontal planoparallel capacitor in a bubbling medium for a transformer oil-air system. In 
contrast to the upper one, the lower electrode was gas-permeable and served simultaneously 
as the bubble source. Using the method of [2], Fig. 4 generalizes the experimental data 
on heat liberation from the gas permeable electrode. With increase in gas velocity (quan- 
tity K) for all field intensities (quantity Ar e ) there are three regions in the dependence 
of the number Nu on the dynamic parameters. In the first region, the heat liberation in- 
tensity depends weakly on gas velocity, which can apparently be explained by the laminar 
character of the gas escape into the liquid. However, with increase in gas velocity to 
some critical value, dependent on field intensity, the intensity of heat liberation, as 
in boiling, increases by a rule Nu = K 2/3 (second region). Upon exceeding a critical gas 
velocity the heat liberation exits into a regime self-similar with respect to K, but Nu 
depends on field intensity (third region). In this region the dispersed phase and the elec- 
trical field lead to a stable turbulent flow regime of the phases in the electrode region 
and heat liberation reaches a stable maximum value. The effect of field intensity on heat 
liberation is most marked at gas velocities greater than 5 mm/sec; at E = 40 kV/cm and a 
gas velocity of i m/sec, heat liberation increases by ten times. Thus, the criterial equa- 
tions of heat liberation of the gas-permeable electrode have the form: 

Nu ~ 2.75 a t  K < 5.10s;  Nu = 4 ,45.10 -~ K 2/3 a t  5.105 ~ K < Kcr  1 ;; 

Nu = 0,01 ( A P r s  1/2 a t  K c r l ~ K < K c r = ;  

A Ar  q- 0.2Ar~ A r e =  8oelE212 (p~ o.. 02 2 = -- P2)/Pl ~1; 

Kcr1= 106.53 (APrs Kcr2= 1976.42 (AP~) 3/4. (29) 
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Fig. 5. Effect of field intensity E', kV/cm (a) and 
gas velocity G', m/sec (b) on intensity of inter- 
phase heat exchange for bubbling of air through 
transformer oil: a) G': i) 1.0"10-4; 2) 1.5.10-4; 
3) 5.3"10-4; b) E': i) 5; 2) 20; 3) 30. Solid lines, 
dc field; dashes, ac. 

These expressions are valid within the limits 1.9-i0 s ~ A" Prs ~ 2.2"107 . 

A qualitatively different pattern can be seen for the dependence of heat liberation 
on field intensity at the upper electrode. In the absence of field the heat-liberation 
coefficient, as at the lower electrode, increases proportionally to gas velocity, which 
is related to the increased intensity of renewal of liquid transported by bubbles from the 
flow core to the heat-exchange surface. When some critical gas velocity is reached (about 
1 cm/sec) the intensity of bubble renewal stabilizes and the heat-liberation coefficient 
is practically independent of gas velocity. In an electrical field the intensity of heat 
liberation is inversely proportional to gas velocity. With increase in field intensity 
the heat liberation coefficient increases due to scattering of bubbles from the interelec- 
trode space and increase in electroconvection in the closed phase, which leads to turbuliza- 
tion of the boundary layer and flow of liquid from the flow core to the electrode region. 
However, with increase in gas velocity, the liquid circulation zone is restricted by bubbles 
from the electrode region and the heat-liberation coefficient falls. Only at sufficiently 
high field intensities (35-40 kV/cm) is the heat-liberation coefficient self-similar relative 
to gas velocity and controlled by the intensity of liquid electroconvection. The heat- 
liberation coefficient at the upper electrode and the field intensity are directly propor- 
tional to each other at all gas velocities. Thus, heat liberation in the given case can 
be generalized to an accuracy of • by a dependence of the type 

Nu = aKn--kb, ( 3 0 )  

where n = -24.214-B -~ at 1.87"i0 s ~ B < 6.86.107, n = -1.634.10-3B 0.4~ at 6.86.107 
B < 8.22.107 , b = 0.757B ~176 at 1.87-10 ~ ~ B < 1.86-106 , b = 4.736"I0-3B ~ at 1.86-106 
B < 8.22"107 , a = (3.1.I0-3B ~ - b)/(3.92.10s)n at 1.87-10 s ~ B < 8.22"107 , B = (Ar + 

Are)/pr~. The effect of temperature head and thermal flux density on the heat-liberation 
coefficient is one of linear proportionality over the entire range of field intensities and 
gas velocities studied. 

Interphase heat exchange during bubbling of a high-resistance liquid was studied under 
the action of the electrical field of a multisection planoparallel capacitor oriented verti- 
cally [Ii]. Field intensity, temperature head and gas velocity were varied at both polari- 
ties of the applied potential in a dc field and a 50-Hz field for phase motion with and 
against the main flow. In the absence of a field the heat-exchange intensity increases 
with increase in gas velocity due to increase in the interphase surface and change in the 
gas flow regime. There is also some intensification of heat exchange with increase in tem- 
perature head due to decrease in the detachment diameter of bubbles and liquid viscosity. 
In an electrical field polarization and deformation of the bubbles occur, which with an 
inhomogeneous distribution and variable field induction leads to oscillations of the phase 
boundary, and at high intensity to breakup of the phases. Therefore, growth in field inten- 
sity leads to intensified heat exchange (Fig. 5a). It is also evident that in ac fields 
the intensification effect is greater than in a constant field. With increase in frequency 
of the applied voltage the intensity of heat exchange increases, reaching a maximum in reso- 
nant bubble oscillation regimes, where the field frequency is equal to the bubble natural 
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oscillation frequency [4]. However, with increase in gas velocity, the degree of heat- 
exchange intensity falls off (Fig. 5b), since the effect of the field becomes comparable 
to the turbulizing action of the gas phase. Similarly, increase in temperature head leads 
to intensification of heat exchange only in the region of laminar gas escape, while with 
increase in gas velocity this dependence becomes self-similar. The qualitative pattern 
of these results is identical for flow with and opposite the main flow; the only differences 
are quantitative. 

Thus, intensity of heat exchange in bubbling processes proves to be strongly dependent 
on gas velocity and electrical field parameters, which makes possible flexible regulation 
and decrease in metallic bulk of the equipment used. 

CONCLUSIONS 

The high efficiency of electric field action on gas-liquid systems has stimulated ever- 
increasing interest of researchers and practicians in the problem of heat mass transport 
under electrical convection conditions; no less important are the advantages of the latter 
over natural and, often, other forms of forced convection, its applicability under conditions 
of weightlessness, the low energy and metal mass requirements of the technologies, and its 
ecological nature. 

The promise of studies in this direction has resulted in wide application of results 
in practical problems. Thus, use of an electric field, aside from the traditional strug- 
gle with loss phenomena in chemical technology and vapor-based energy production, has permit- 
ted development of new technical approaches for effective generation of liquid electroaero- 
sols, as well as processes for high-level purification of materials, volume boiling and 
condensation, temperature stabilization and heat-exchange regulation, separation of ions 
in aqueous electrolyte solutions, etc. 

NOTATION 

v, Vra , and G, linear, radial, and reduced velocity, m/sec; T, temperature, K; p, dens- 
ity (kg/m 3) or relative mass concentration; n I and n, volume density of ions and numerical 
particle concentration, m-3; Pc, space charge density, C/m~; a, particle radius, m; ~, 
volume content of phase i; J1~ and J21, phase transition intensity, kg/(m2.sec); P, pressure, 
Pa; E and ~, electric field intensity (V/m) and potential (V); Je, transport current density, 
A/m2; ~, function which considers processes of breakup, agglomeration, efflux and influx 
of particles, (m3"sec)-Z; t, time, sec; D, diffusion coefficient, m2/sec; o, liquid surface 
tension, N/m; ~, dynamic viscosity coefficient, Pa.sec; 6 ks Kronecker delta; x,, generalized 
coordinate, m or rad; F~, F~, F~,F Ap, F B , interphase viscous friction force, "combined mass" 
force, force produced by velocity gradient in carrier phase, excess pressure head force 
for accelerated motion of carrier force, and Basset force, N; 7 and S, thermal coefficients 
of pressure and volume expansion, K-z; % and St, thermal conductivity [W/(m.K)] and heat 
liberation [W/(m2"K)] coefficients; Cp, isobaric specific heat, J/(kg.K); ~f and qk, energy 
dissipation coefficients for translational fine-scale motion in boundary layer and Stokes 
quasistationary flow over particle; r*, heat of phase transition, J/kg; r, spherical coordi- 
nate, m; g, acceleration of gravity, m/sec2; St and Re, Struchal and Reynolds numbers; s, 
relative dielectric permittivity; go, electrical constant, F/m; ql, excess charge, C; bl, 
ion mobility, m2/(V'sec); k, Boltzmann's constant, J/K; t,, ~, and to, characteristic time 
for change in velocity of sphere motion, electrical relaxation time, and characteristic 
time for change in field induction, sec; Nu, Ar, K, Pr~, similarity criteria used in [2] 
for processing of data on heat liberation under bubbling conditions; Ar e , analog of Archi- 
medes number in electrical field. Indices: ' and ", parameters in regions ~' and ~"; k 
and s tensor components; i = i, 2, o, parameters of carrier, dispersed, and "sigma" [4] 
phases; s, 0, v, and a, parameters at free liquid surface, beginning of the process, vapor 
component, and particle surface; E, ef, equilibrium and effective values. 
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BEHAVIOR OF LIQUID THERMODYNAMIC STABILITY 

UNDER SUPERHEATING AND SUPERCOOLING 

V. P. Skripov UDC 536.42 

It is noted that evaluation by van der Waals equation of the asymptotic (T 
0 K) spinodal tensile stress of liquids is close in order of magnitude to the 
ideal strength of solids and the limiting pressure on the extension of the fu- 
sion line of various substances. 

i. Equilibrium coexistence of phases on a planar phase boundary is determined by equal- 
ity of temperatures, pressures, and chemical potentials ~ within the phases. For slow (quasi- 
static) processes phase transition produces no marked deviation of the system from equilibrium 
conditions. But for sufficiently rapid change in external parameters such deviations may 
become significant. This is especially true of the initial stage of phase transition. This 
stage includes the appearance of metastability of the original phase, nucleation, and growth 
of the new phase. A number of questions arising here were considered in a previous study 
[i]. The thermodynamic factor in the expression for nucleation rate is very sensitive to 
difference in the chemical potentials of the phases and the value of the interphase surface 
tension. With deeper penetration into the metastable state range, the height of the activa- 
tion barrier for nucleus formation decreases rapidly. Development within the system of 
an intense flux J of fluctuation nuclei of the new phase is of almost a threshold character 
[I]. This may be treated as loss of stability of the medium with respect to heterophase 
local fluctuations. The onset of such instability is not necessarily accompanied by reduc- 
tion in stability of the metastable system relative to homophase changes in density and 
entropy. The response of the isotropic system to small local perturbations in pressure 
and temperature is characterized by the isothermal compressibility ST = -(i/v)(Sv/SP)T and 
the isobaric specific heat Cp = T(Ss/ST)p. For stability the conditions of [2] must be 
satisfied: ~T > 0, Cp > 0 or (~P/Sv) T < 0 and (~T/Ss)p > 0. 

The boundary of thermodynamic stability (spinodal) is defined by the equations 

' aT ', (1) 
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